The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae
نویسندگان
چکیده
The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC) reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization.
منابع مشابه
An mRNA decapping mutant deficient in P body assembly limits mRNA stabilization in response to osmotic stress
Yeast is exposed to changing environmental conditions and must adapt its genetic program to provide a homeostatic intracellular environment. An important stress for yeast in the wild is high osmolarity. A key response to this stress is increased mRNA stability primarily by the inhibition of deadenylation. We previously demonstrated that mutations in decapping activators (edc3∆ lsm4∆C), which re...
متن کاملInteractions between Upf1 and the Decapping Factors Edc3 and Pat1 in Saccharomyces cerevisiae
In Saccharomyces cerevisiae, mRNA transcripts with premature termination codons are targeted for deadenylation independent decapping and 5' to 3' decay in a quality control pathway termed nonsense-mediated decay (NMD). Critical factors in NMD include Upf1, Upf2, and Upf3, as well as the decapping enzyme, Dcp2/Dcp1. Loss of Upf2 or Upf3 leads to the accumulation of not only Upf1 and Dcp2 in P-bo...
متن کاملTwo related proteins, Edc1p and Edc2p, stimulate mRNA decapping in Saccharomyces cerevisiae.
The major mRNA decay pathway in Saccharomyces cerevisiae occurs through deadenylation, decapping, and 5' to 3' degradation of the mRNA. Decapping is a critical control point in this decay pathway. Two proteins, Dcp1p and Dcp2p, are required for mRNA decapping in vivo and for the production of active decapping enzyme. To understand the relationship between Dcp1p and Dcp2p, a combination of both ...
متن کاملA truncated form of KlLsm4p and the absence of factors involved in mRNA decapping trigger apoptosis in yeast.
The LSM4 gene of Saccharomyces cerevisiae codes for an essential protein involved in pre-mRNA splicing and also in mRNA decapping, a crucial step for mRNA degradation. We previously demonstrated that the first 72 amino acids of the Kluyveromyces lactis Lsm4p (KlLsm4p), which contain the Sm-like domains, can restore cell viability in both K. lactis and S. cerevisiae cells not expressing the endo...
متن کاملThe structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex.
The Dcp1:Dcp2 decapping complex catalyses the removal of the mRNA 5' cap structure. Activator proteins, including Edc3 (enhancer of decapping 3), modulate its activity. Here, we solved the structure of the yeast Edc3 LSm domain in complex with a short helical leucine-rich motif (HLM) from Dcp2. The motif interacts with the monomeric Edc3 LSm domain in an unprecedented manner and recognizes a no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016